搜索关键词: 氮化硅陶瓷加工 氮化铝陶瓷加工 macor可加工微晶玻璃陶瓷
PRODUCT CATEGORIES
随着大功率和超大规模集成电路的发展,集成电路和基片间的散热性也越来越重要,因此,基片必须要具有高的导热率和电阻率。氮化铝具有高热导率、高温绝缘性和优良的介电性能、良好的耐腐蚀性、与半导体Si相匹配的膨胀性能等优点,因此成为优良的电子封装散热材料,是组装大型集成电路所必需的高性能陶瓷基片材料。钧杰陶瓷专业精密加工各种陶瓷材料,氮化铝陶瓷是我们最经常使用的材料之一,为您简要的介绍氮化铝陶瓷基片的烧结工艺。氮化铝陶瓷精密加工联系:136 998 99025。
氮化铝陶瓷基板的烧结工艺
烧结助剂及其添加方式 烧结助剂主要有两方面的作用:一方面形成低熔点物相,实现液相烧结,降低烧结温度,促进坯体致密化;另一方面,高热导率是AlN基板的重要性能,而实际AlN基板中由于存在氧杂质等各种缺陷,热导率低于其理论值,加入烧结助剂可以与氧反应,使晶格完整化,进而提高热导率。
常用的烧结助剂主要是以碱土金属和稀土元素的化合物为主,单元烧结助剂烧结能力往往很有限,通常要配合1800℃以上烧结温度、较长烧结时间及较多含量的烧结助剂等条件。烧结过程中如果仅只采用一种烧结助剂,所需要的烧结温度难以降低,生产成本较高。二元或多元烧结助剂各成分间相互促进,往往会得到更加明显的烧结效果。
目前,助烧剂引入的方式一般有2种,一种是直接添加,另一种是以可溶性硝酸盐形式制成前驱体原位生成烧结助剂。后者所生成的烧结助剂组元分布更为均匀,颗粒更为细小,比表面能更大。
烧结温度 烧结温度的提高有助于提高AlN陶瓷的热导率及强度。氮化铝陶瓷在1500~1800℃范围内烧结,发现温度的升高有利于AlN陶瓷材料热导率的增大,得到的AlN陶瓷热导率从76.9W/(m·K)升高到了113.9W/(m·K)。
在烧结炉中,烧结温度的均匀性深刻影响着AlN陶瓷。烧结温度均匀性的研究也为大批量生产、降低生产成本提供了保障,有利于实现AlN陶瓷基片产品的商业化生产。
烧结方法 AlN陶瓷基片一般采用无压烧结,该烧结方法是一种最普通的烧结,虽然工艺简单、成本较低、可制备形状复杂,但烧结温度一般偏高,再不添加烧结助剂的情况下,一般无法制备高性能陶瓷基片。
传统烧结方式一般通过外部热源对AlN坯体进行加热,热传导不均且速度较慢,将影响烧结质量。微波烧结通过坯体吸收微波能量从而进行自身加热,加热过程是在整个材料内部同时进行,升温速度快,温度分散均匀,防止AlN陶瓷晶粒的过度生长。这种快速烧结技术能充分发挥亚微米级和纳米级粉末的性能,具有很强的发展前景。
放电等离子烧结技术主要利用放电脉冲压力、脉冲能和焦耳热产生瞬间高温场实现快速烧结。放电等离子烧结技术的主要特点是升温速度快,烧结时间短,烧结温度低,可实现AlN陶瓷的快速低温烧结。通过该烧结方法,烧结体的各个颗粒可类似于微波烧结那样均匀地自身发热以活化颗粒表面,可在短时间内得到致密化、高热导烧结体。
氮化铝陶瓷材料的生产是非常复杂,难度极高的,这个其实也是氮化铝陶瓷材料价格高的重要的原因之一,陶瓷材料的本身是非常脆,硬度也非常高的,烧结前进行加工很难保证烧结后的精度,烧结后的加工难度又比较大,所以这种材料需要专用的设备来做就非常的必要。钧杰陶瓷有专业的陶瓷加工团队,又有专门加工陶瓷材料的陶瓷雕铣机,氮化铝陶瓷加工联系钧杰陶瓷:13699899025。